Measurement bootstrapping Kalman filter

نویسندگان

  • Zhentao Hu
  • Yumei Hu
  • Yong Jin
  • Shanshan Zheng
چکیده

In practice, many estimation problems rely on on-line solutions, hence recusive methods are necessary. Tradition estimation approaches for linear systems subject to Gaussian noise are based on the Kalman filter and its improving algorithms. Based on the realization construction of state prediction and measurement update, Kalman filter can obtain the optimal estimation of state under the linear minimum variance criterion. However, it is known that the optimal filtering result is achieved in statistical sense, which can not meet a superior result for single filtering process because of the random characteristics effect of measurement noise. Aiming at this problem, the authors propose a novel Kalman filtering algorithm based on measurement bootstrapping strategy. In realization of algorithm, first, combining with the extraction and utilization of measurement information including the latest measurement and the prior statistical information from measurement noise modeling, the measurement bootstrapping strategy is designed and virtual measurements are sampled. Its objective is to enhance the reliability of latest measurement by increasing samples numbers. Second, virtual measurements are applied to Kalman filtering framework, and the key improvement is concentrated in the utilization of measurement information. In addition, considering the requirements in engineering application such as instantaneity, filtering precision and robustness, the distributed weighted fusion structure and the centralized consistency fusion structure are designed respectively. Finally, the theoretical analysis and experimental results verify the feasibility and efficiency of the proposed algorithm. © 2015 Elsevier GmbH. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doppler and bearing tracking using fuzzy adaptive unscented Kalman filter

The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...

متن کامل

A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems

This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...

متن کامل

کاهش تعداد ماهواره‌ها در یک سیستم ناوبری ترکیبی GPS/INS با استفاده از فیلتر ذره‌ای

The estimation of situation in a combinational navigation GPS/INS with least number of satellites is the main purpose of this paper. As inertial measurement unit uses altimeter for height measurement, we can assume which height poses certain amounts, whereas geographical length and width are unknown to us in this paper. The single difference GPS is employed for updating the inertial navigation ...

متن کامل

Novel approach to nonlinear/non-Gaussian Bayesian state estimation - Radar and Signal Processing, IEE Proceedings F

An algorithm, the bootstrap filter, is proposed for implementing recursive Bayesian filters. The required density of the state vector is represented as a set of random samples, which are updated and propagated by the algorithm. The method is not restricted by assumptions of linearity or Gaussian noise: it may be applied to any state transition or measurement model. A simulation example of the b...

متن کامل

Mobile Robot Navigation Error Handling Using an Extended Kalman Filter

Obviously navigation is one of the most complicated issues in mobile robots. Intelligent algorithms are often used for error handling in robot navigation. This Paper deals with the problem of Inertial Measurement Unit (IMU) error handling by using Extended Kalman Filter (EKF) as an Expert Algorithms. Our focus is put on the field of mobile robot navigation in the 2D environments. The main chall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016